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ABSTRACT

The close coupling formalism and the approximate coupled states formalism for

collisions of an asymmetric top rigid rotor and a linear rigid rotor are reviewed.

Calculations for excitation of H O by H using a recent, accurate, ab initio potential2 2

energy surface are presented.
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111... IIInnntttrrroooddduuuccctttiiiooonnn

1Many physical phenomena can be described in terms of collision cross sections.

Some of these, of course, are adequately described by approximate methods involving

averaged quantities and precise details of the molecular interactions and state-to-state

cross sections are not required. However, detailed first-principles investigations are still

desirable to put such approximate methods on a more secure theoretical basis and in

order to provide the detailed results which are needed in some cases. Interpretation of

radioastronomical observations of interstellar molecules is an application where detailed

state-to-state collision rates are often required. It has generally not been possible to

2obtain these values experimentally but theoretical studies have proved very useful.

These molecules are often observed in regions where only a few rotational levels are

populated, suggesting both the necessity and the possibility of accurate quantum coupled

channel calculations. Of course, in addition to accurate molecular scattering calculations,

accuracy of theoretical rates also depends on the verisimilitude of the interaction

potential energy surface which is used.

Because the number of channels required for converged cross sections increases

dramatically with the complexity of the collision partners, especially if both have

internal degrees of freedom, most calculations to date have been limited to relatively

simple systems in which one of the collision partners is a structureless atom. Although

excitation by H is the most important collisional mechanism in the interstellar gas,2

most studies have considered only excitation by He which is less abundant by a factor

of four to five. With rapid increases in computational power, however, calculations are

being extended to more complex systems, such as symmetric top rotors excited by

3,4diatomic molecules (NH -H ) and asymmetric top rotors excited by diatomic3 2
5molecules (H O-H ) .2 2

The current effort is part of an ongoing study of interstellar water. This molecule

is responsible for rather spectacular maser transitions observed in star-forming regions
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6and in the envelopes of some evolved stars and is also thought to be important in the

energy balance of these and other regions. Successively more refined calculations now

7,8appear to have provided converged values for excitation of H O by He. We recently2

presented an extensive ab initio calculation for the interaction of H O-H , including a2 2
9global fit. We describe here initial molecular scattering calculations using this potential

energy surface. The next section reviews the molecular scattering formalism and the

following section presents studies of basis set convergence and tests of the accuracy of

the coupled states approximation.

222... MMMooollleeecccuuulllaaarrr ssscccaaatttttteeerrriiinnnggg fffooorrrmmmaaallliiisssmmm

This section describes the formalism for close coupling and approximate coupled

states calculations for collisions of asymmetric rigid rotors with linear rigid rotors which

10has been implemented in the MOLSCAT computer code and which differs slightly

3-5from that used in other studies. We describe here our choice of coordinates,

expansion basis functions, and functions used to expand the angular part of the

intermolecular potential. We then give the resulting close coupling and approximate

coupled states equations.

AAA... CCCoooooorrrdddiiinnnaaattteee sssyyysssttteeemmmsss

The collision is described in space-fixed coordinates placed at the center of mass

of the two molecules to eliminate the translation of the system as whole. The collision

coordinate, RRR, the vector from the asymmetric top center of mass to the linear rotor

center of mass, is then conveniently described by spherical polar coordinates, R,Θ,Φ,

where R is the radial distance, Θ is measured from the z-axis, and Φ is measured from

the xz-plane. The orientation of the linear molecule can also be described with respect

to this space-fixed coordinate by polar angles, Θ′ ,Φ′ . Three angles are required to

describe the orientation of the asymmetric top with respect to the space-fixed axes,
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traditionally the Euler angles α,β,γ which rotate the space-fixed axes to an axis system

fixed in the frame of the molecule.

11Following earlier work we do not consider here the most general case, but

assume that the asymmetric top has a plane of symmetry; this is always true for

symmetric tops, such as NH , and is also true for H O. We choose the molecule-fixed3 2

axes such that the xz-plane is a plane of symmetry. If the molecule has a two-fold or

higher axis of symmetry (always true for a symmetric top) we chose this axis as the

molecule-fixed z-axis; otherwise (e.g., a planar molecule such as deuterated water) we

choose one of the two principal axes of inertia which are in the molecular plane (the

xz-plane) as the molecule-fixed z-axis. The molecular orientation α,β,γ = (0,0,0) then

corresponds to alignment of the molecule-fixed and space-fixed axis systems. A general

orientation α,β,γ is produced by rotating the molecule-fixed axis system, beginning at

(0,0,0), by an angle α about the molecule-fixed z-axis, followed by a rotation β about

the molecule-fixed y-axis, and then another rotation γ about the molecule-fixed z-axis.

BBB... EEExxxpppaaannnsssiiiooonnn bbbaaasssiiisss fffuuunnnccctttiiiooonnnsss

The wavefunctions for an asymmetric top rotor can be written as combinations of

symmetric top eigenfunctions (rotation matrices),

j ��� j 2 1/2 jW (αβγ) = a ([j]/8π ) � (αβγ) , (1)τ,m ∑�� τ,k k,mk
jwhere the � are Wigner rotation matrices defined according to the conventions ofk,m

12Silver and we use the notation [j]=2j+1; j is the total angular momentum of the rotor,

m its projection on the space-fixed z-axis, k its projection on the molecule-fixed z-axis,

and τ an index to distinguish the 2j+1 asymmetric top levels for each j. The

jcoefficients a may be obtained by diagonalizing the asymmetric top Hamiltonian,τ,k
-1 2 -1 2 2

� = (2I ) � + (2I ) � + (2I ) � , (2)x x y y z z

where I are the principal moments of inertia and � the angular momentum operatorsα α
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about the corresponding axes, in a symmetric top basis as discussed in Ref. 11 which

gives the required matrix elements. As noted there, the moments of inertia must

correspond to the rotor molecule-fixed coordinate system discussed above, and may differ

jin order from the standard spectroscopic A, B, C designation. The coefficients a areτ,k

real and have the properties

j j∑ a a = δ , (3a)k τ,k τ ′ ,k τ,τ ′
j ja = ε a , (3b)τ,-k j,τ τ,k

jwhere ε for a given j,τ is either plus or minus one. Further, for a given j,τ, a arej,τ τ,k

nonzero for only even or only odd k values; it will be convenient to describe this as

j k ja = (1/2) [1 + (-1) α ] a , (3c)τ,k j,τ τ,k

where α is either plus one, for even k, or minus one for odd k. Eq. (3a) is just aj,τ

statement of the orthonormality of the asymmetric top wavefunctions. Eqs. (3b) and

(3c) are a well known consequence of the fact that the asymmetric top wavefunctions

transform according to irreducible representations of the D space symmetry point group.2

Note that wavefunctions for a symmetric top rotor can be written as a special case of

the asymmetric top expansion, Eq. (1). The wavefunctions for the linear rotor are

spherical harmonics, Y (Θ′ ,Φ′ ).j,m

It is useful to construct expansion basis functions which are eigenfunctions of the

total angular momentum, J, because the coupled equations (see Section 3.D) are then

diagonal in J and independent of its projection, M, on the space-fixed axis. The

appropriate combination is

JMΩ (Θ,Φ,Θ′ ,Φ′ ,α,β,γ)j 1τ1j2j�
��� j,µ= <jµ�m|JM> w (Θ,Φ,α,β,γ) Y (Θ′ ,Φ′ ) (4)∑�� j1 , τ1,j2 �m
��� j1= <jµ�m|JM> <j1m1j2m2|jµ> W (αβγ) Y (Θ,Φ) Y (Θ′ ,Φ′ )∑�� τ1,m1 j2m2 �m

Here <j1m1j2m2|j12m12> is a Clebsch-Gordan angular momentum coupling coefficient and

the sums are over the projection quantum numbers. We have first coupled the two

rotor momenta, j1 and j2, to give a resultant, j, and then coupled j with the collision
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orbital angular momentum, �, to give J, the total momentum for the system.

CCC... IIInnnttteeerrraaaccctttiiiooonnn pppooottteeennntttiiiaaalll

It is convenient to expand the interaction potential in a complete orthonormal set

of angular functions. We choose complete sets of spherical harmonics for Θ,Φ and

Θ′ ,Φ′ and rotation matrices for α,β,γ and we choose contracted products which are

rotationally invariant:

���V(R,Θ,Φ,Θ′ ,Φ′ ,α,β,γ) = v (R) T (Θ,Φ,Θ′ ,Φ′ ,α,β,γ) . (5)∑�� p1q1p2p p1q1p2p

where

-1 ��� �p1 p2 p�T (Θ,Φ,Θ′ ,Φ′ ,α,β,γ) = (1+δ ) (6)p1q1p2p q10 ∑�� �r1 r2 r�

p1 p1+q1+p2+p p1Y (Θ′Φ′ ) Y (ΘΦ) [� (α,β,γ) + (-1) � (α,β,γ)] .p2r2 pr q1r1 -q1r1
pHere (:::) is a Wigner 3-j symbol, � (α,β,γ) is a Wigner rotation matrix andqr

12Y (ΘΦ) is a spherical harmonic, all as defined by Silver; δ is a Kronecker delta,pq ij

equal to one if i=j and to zero otherwise; and the sum is over r1, r2, and r. Note that

the phased sum over q1 ensures that these functions are symmetric on reflection in the

asymmetric rotor xz-plane.

Because of rotational invariance of the system as a whole, these functions can

depend on only a smaller number of relative angles (sometimes called body-fixed angles,

not to be confused with the rotor molecule body-fixed coordinate system discussed

above). In general, one can choose three angles, corresponding to rotation of the

collision system as a whole, in an arbitrary way. A convenient choice does this by

fixing the asymmetric rotor orientation at α,β,γ=(0,0,0) and defining body-fixed θ,ϕ and

θ ′ ,ϕ′ as the collision direction and the linear molecule orientation relative to the rotor

molecule body-fixed axis system. In terms of these relative coordinates Eqs. (5)-(6) can

be written as

���V(R,θ,ϕ,θ ′ ,ϕ′ ) = v (R) t (θ,ϕ,θ ′ ,ϕ′ ) , (7)∑�� p1q1p2p p1q1p2p
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where

-1 ��� �p1 p2 p�t (θ,ϕ,θ ′ ,ϕ′ ) = (1+δ ) (8)p1q1p2p q10 ∑�� �r1 r2 r�

p1+q1+p2+pY (θ ′ϕ ′ ) Y (θϕ) [δ + (-1) δ ] ,p2r2 pr q1r1 -q1r1
and the sum is again over r1,r2,r.

DDD... CCClllooossseee cccooouuupppllliiinnnggg eeeqqquuuaaatttiiiooonnnsss

The close coupling formalism for nonreactive molecular collision dynamics solves

the time-independent Schrodinger equation by expanding the total system wavefunction in

a basis which consists of the asymptotic vibration-rotation functions for the two colliding

molecules and partial waves (spherical harmonics) for the angular part of the collision

coordinate. This results in coupled second-order differential equations for functions of

the collision distance. The coupling arises from the angle dependence of the

intermolecular potential energy surface. With the expansion basis set described above

the close coupled radial equations are

� � JM�d2/dR2 - �(�+1)/R2 + k2 � F (R) = (9)� j1τ1j2� γ � �γ �I
��� JM JM JM(2m/�2) < Ω |V| Ω > F (R) ,∑�� γ γ ′ γ ′ � ′�γ �γ ′ I

where γ stands for the set of rotor quantum numbers, j1,τ1,j2,j, and the magnitude of the

wavevector is defined by

k2 = (2m/�2) [E - ε - ε ] . (10)j1τ1j2 j1τ1 j2
In Eq. (10) E is the total energy, ε and ε are energies of the asymmetric top andj1τ1 j2
linear rotor, respectively, and m is the collision reduced mass.

With the interaction potential expanded as in Eqs. (5)-(8) the coupling matrix

elements are

JM JM ���<Ω |V(R,Θ,Φ,Θ′ ,Φ′ ,α,β,γ)| Ω > = v (R) (11)γ � γ ′ � ′ ∑�� p1q1p2pp1q1p2pkk ′
J-j1 ′+j2 ′ -j+k-p -1 1/2(-1) (4π) [j1,j1 ′ ,j2,j2 ′ ,j,j ′ .�,� ′ ,p2,p]
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�j ′ j p ��� � ′ p� � j 2 p2 j 2 ′� �� � ′ p� j1 j1 ′� � � � �j1 ′ j1 p1� a a�0 0 0� �0 0 0 � � j ′ j J� τ1,k τ1 ′ ,k ′�j2 ′ j2 p2�

-1 �� j 1 p1 j 1 ′� p1+q1+p2+p � j 1 p1 j 1 ′��[1+δ ] �� � + (-1) � �q10 ��-k q1 k ′ � �-k -q1 k ′ ��

where [a,b,...]=(2a+1)(2b+1)... . There is no coupling between channel basis functions of

J+j1+j2+�differing total parity, � = α ε (-1) , as can readily be shown by noting thatj,τ j,τ

the coupling matrix elements are real and independent of the projection of the total

momentum, M, and equating the complex conjugate of the matrix element with itself

using

JM *Ω (Θ,Φ,Θ′ ,Φ′ ,α,β,γ) = (12)j 1 τ1j2j�
j1+j2+�+J+M J-M(-1) α ε Ω (Θ,Φ,Θ′ ,Φ′ ,α,β,γ)j1τ1 j1τ1 j1 τ 1j2j�

The coupled equations may thus be solved separately for each parity block.

The asymptotic behavior of the radial functions defines a scattering S-matrix.

State-to-state cross sections are obtained from the S-matrices as

σ(j1τ1j2�j1'τ1 ′ j2 ′ ) = (13)

2 -1 ��� J 2π ([j1,j2] k ) [J] |δ -S | .j 1τ1j2 ∑�� γ� ,γ ′ � ′ γ� ,γ ′ � ′J� � ′ jj ′

EEE... CCCooouuupppllleeeddd ssstttaaattteeesss eeeqqquuuaaatttiiiooonnnsss

The coupled states method may be obtained by transforming the radial scattering

equations so that the centrifugal coupling is transferred from the potential coupling

matrix on the right-hand side of Eq. (9) to the left-hand side, and then approximating

this nondiagonal centrifugal term with an expression in which the off-diagonal terms are

set to zero and in which the diagonal terms are approximated by a single, "effective"

13orbital angular momentum, λ, in all channels. In general, λ is a function of � and

� ′ , the initial and final close coupling orbital angular momenta. However, especially

simple cross section formulas result from either of the (unsymmetrical) choices λ=� or

λ=� ′ , i.e., either the initial or final channel orbital angular momentum, and virtually all
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coupled states calculations have employed this choice, which is also adopted here.

The resulting coupled equations are formally similar to those of the close coupling

method:

� � λµ�d2/dR2 - λ(λ+1)/R2 + k2 � g (R) = (14)� j1τ1j2� γ�γI
��� λµ λµ λµ(2m/�2) < Ω |V| Ω > g (R) .∑�� γ γ ′ γ ′�γγ ′ I

Here λ(λ+1)/R2 is the approximate centrifugal term. Thus, λ functions as an effective

partial wave, while µ is the projection on the collision axis of the total rotor

momentum, j. The coupling matrix elements are given by

λµ λµ ���<Ω |V(R,Θ,Φ,Θ′ ,Φ′ ,α,β,γ)| Ω > = v (R) (15)γ γ ′ ∑�� p1q1p2pp1q1p2pkk ′

j+j1 ′+j2 ′ -µ-k -1 1/2(-1) (4π) [j1,j1 ′ ,j2,j2 ′ ,j,j ′ ,p2,p]

�j ′ j p �� j 2 p2 j 2 ′� � j p j ′� j1 j1 ′� � � � �j1 ′ j1 p1� a a�0 0 0 � �µ 0 -µ � τ1,k τ1 ′ ,k ′�j2 ′ j2 p2�

-1 �� j 1 p1 j 1 ′� p1+q1+p2+p � j 1 p1 j 1 ′��[1+δ ] �� � + (-1) � ��q10 ��-k q1 k ′ � �-k -q1 k ′ ��

Note that there is no coupling among different λ or µ values and that the coupling

matrix elements are independent of λ.

The asymptotic behavior of the g(R) determines a coupled states scattering

S-matrix in the same manner as for the close coupling method and state-to-state cross

sections are given in terms of the S-matrices as

σ(j1τ1j2�j1'τ1 ′ j2 ′ ) = (16)

2 -1 ��� λµ 2π ([j1,j2] k ) [λ] |δ -S | .j 1τ1j2 ∑�� γ,γ ′ γ , γ ′λµjj ′

It is readily shown, using the properties of the channel basis functions under

complex conjugation and the fact that the matrix elements are real, that changing the

sign of µ results in

λ-µ λ-µ j1+j2+j+j1 ′+j2 ′+j ′<Ω |V(R,Θ,Φ,Θ′ ,Φ′ ,α,β,γ)| Ω > = (-1) (17)γ γ ′

λµ λµε α ε α <Ω |V(R,Θ,Φ,Θ′ ,Φ′ ,α,β,γ)| Ω >.jτ jτ j ′ τ ′ j ′ τ ′ γ γ ′
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Since the potential coupling matrix elements for -µ differ from those for +µ by at most

a phase which depends only on the rotor quantum numbers, the S-matrix elements can

also differ by only a phase. For quantities which depend on the modulus of S-matrix

elements and not on their phase, notably the state-to-state cross sections in Eq. (16), one

needs to perform calculations only for nonnegative µ.

333... CCCaaalllcccuuulllaaatttiiiooonnnsss fffooorrr HHH OOO --- HHH222 222

Calculation of the H O-H potential and subsequent fit to 48 terms in the angular2 2
9expansion, Eq. (7), have been described previously. Using this fit we have done

molecular scattering calculations with two major goals. First, we examine convergence

of cross sections on increasing the size of the rotor basis set. Second, we test the

accuracy of the coupled states approximation. The H O rotational functions and energy2

levels used here are the same as those described in Ref. 8. The H rotational energies2
-1were calculated from the rotation constant, B=60.853 cm . Calculations were done with

10the MOLSCAT computer code; modifications needed to handle collisions of an

asymmetric rigid rotor with a linear rigid rotor are implemented in version 14 of this

14code. We used the modified log-derivative method of Manolopoulos to integrate the

coupled equations. Tolerances were chosen to obtain inelastic cross sections accurate to

2at least 1% (or 0.01 Å for small cross sections); the same criteria were used to

truncate the sum over partial waves.

This collision system is particularly favorable for coupled channel methods since

both species have large rotation constants with consequently few rotational levels

accessible at thermal energies. Also, both species exist in para and ortho nuclear spin

forms which are not interconverted by nonreactive collisions so that calculations can be

done separately for the four possible para/ortho combinations. Nonetheless, to keep

calculations tractable we have limited them to energies at which only the lowest H2

level (j=0 for para-H and j=1 for ortho-H ) is accessible, i.e., no more than a few2 2
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hundred wavenumbers.

Results for para-H O in collisions with para-H are given in Table 1 for total2 2
-1energies of 47, 100, and 300 cm and for rotational basis sets of different size. The

basis sets are labeled B(n1,n2) which indicates that all H O functions with j1≤n1 (of the2

proper para or ortho symmetry) and all H functions with j2≤n2 (only even j2 for2

para-H and odd j2 for ortho-H ) are included. Similar results for ortho-H O in2 2 2

collisions with para-H are given in Table 2 and for para- and ortho-H O in collisions2 2

with ortho-H in Tables 3 and 4, respectively. It might be noted that the largest close2

coupled calculations reported here, the B(5,3) basis results in Table 3, involved slightly

over 700 coupled channels. In addition to accurate close coupling calculations, we have

performed approximate coupled states calculations. These results are included in

parentheses in Tables 1-4.

It can be seen that the B(4,n) bases give results which are in most cases within

10% of the B(5,n) results, even at energies where some j1=4 channels are accessible.

Convergence tends to be worse though for cross sections among levels near the basis set

limit, as expected. For excitation by para-H , inclusion of j2=2 channels is required for2

10% accuracy even though these channels are not asymptotically accessible. For

excitation by ortho-H , however, inclusion of j2=3 channels is less important.2

Examination of the tables shows that cross sections for transitions induced by

ortho-H are larger -- sometimes dramatically so -- than cross sections for the same2

transitions induced by collisions with para-H . This effect is readily seen by comparing2
-1the 100 cm values from Table 1 with the values in Table 3 which are at the same

collisional kinetic energy. This result is not surprising. At the energies considered here

only the j2=0 level is accessible in para-H and, unlike for higher rotational levels, the2

j2=0 level does not support a long-range dipole-quadrupole interaction, leading to greatly

reduced cross sections. Excitation by warmer para-H , where j2=2 is populated, is2
15expected to lead to cross sections more similar to those found here for ortho-H .2
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This reduction in rates for excitation by cold para-H has also been observed2
16 3,4experimentally by Oka and in earlier theoretical results for NH -H collisions.3 2

We find that the coupled states approximation does not predict quantitatively

reliable cross sections, especially at the lowest energies, although it generally gives the

correct hierarchy of values. The approximation is expected to become more accurate at

higher collision energies and, indeed, for para-H collisions it is generally reliable to2

10-20% except at the lowest energies and for some of the small cross sections. Not

7,8surprisingly, this accuracy is consistent with that found for H O-He. The coupled2

states approximation is significantly less accurate for ortho-H collisions which is2

believed to reflect the greater anisotropy and long-range nature of the potential in this

case.

Because collisional excitation rates for H O-H have not been available,2 2
6astrophysical applications have relied on rates computed for H O-He. The rationale for2

this procedure is that para-H in its ground rotational state is analogous to a2

structureless atom and should have collision cross sections similar to those for He,

perhaps multiplied by a small scaling factor to account for the smaller reduced mass

and somewhat larger size of H as compared with He. The validity of this procedure2

is examined in Table 5 which compares coupled states cross sections for excitation of

17para-H O by para-H with values computed for H O-He at a total energy of 3002 2 2
-1cm . It can be seen on the one hand that a simple multiplicative scaling relation is

not quantitatively accurate. On the other hand, the H cross sections are the same2

order of magnitude as the He cross sections and, with a few exceptions, both show the

same hierarchy of values as a function of final state for a given initial state. A similar

comparison is made in Table 6 between cross sections for ortho-H O calculated here2
18and values for excitation by He obtained from an earlier theoretical potential.
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444... CCCooonnncccllluuusssiiiooonnnsss

We have performed close coupling calculations for H O-H in which we have2 2

varied the size of the rotor basis sets. We find that cross sections converged to a few

percent can be achieved by including only a few closed rotational states of H O. For2

excitation by para-H in its lowest, j2=0 level, it is necessary to include j2=2 basis2

functions to obtain better than 10% precision. Although the results are not shown in

the tables, we also considered (within the coupled states approximation) the effect of

including j2=4 basis functions, finding them to have an insignificant effect. Inclusion of

closed H rotational states seems less important for excitation by ortho-H .2 2

The coupled states approximation, which has proved useful for studies of excitation

by He atoms, is found here to be somewhat less reliable for excitation by H , although2

it may prove to be adequate at higher collision energies. It will be worthwhile to

19consider other approximate methods, for example, the decoupled L-dominant method

which is expected to be better for systems with strong long-range forces.

We have examined the common practice of adapting rates of excitation by He

atoms to mimic excitation by para-H in its lowest, j2=0, level, finding that this is2

qualitatively reasonable but certainly not quantitatively accurate. We have also examined

the expectation that cross sections for excitation by ortho-H are significantly larger than2

those for excitation by cold para-H and have found this to be true; in some cases the2

enhancement is much more than the factor of 2-4 which has been generally assumed on

15the basis of simple arguments.

We plan to extend the calculations reported here to obtain rates for excitation of

H O by H which are needed to interpret astrophysical observations. On the basis of2 2

results presented here we expect that it will be possible, though expensive, to obtain

accurate H excitation rates among the lower H O levels at temperatures to a few2 2

hundred kelvin with current computational capabilities. These will be quite useful, for

example, for interpreting planned observations of the 1 -1 transition of interstellar1,0 0,1
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water with the Submillimeter Wave Astronomy Satellite. Unfortunately, calculation of

rates among the high-lying rotational levels levels and for the high kinetic temperatures

(to about 1000 K) required for a proper understanding of observed interstellar masers are

not currently feasible using the accurate close coupling method. Calculation of rates for

these transitions and temperatures will require a judicious choice of approximate

approaches as well as enormous computational power.
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Table 1. Cross sections for para-H O in collisions with para-H as a function of basis2 2

set size; the notation B(n1,n2) indicates H O functions with j1≤n1 and H functions with2 2

j2≤n2. Values from the coupled states approximation are listed in parentheses. The

-1 2collision energy is given in cm and cross sections are in Å .

Energy in i t i a l f ina l B(5 ,2) B(5 ,0) B(4 ,2)______ _______ _____ _____________ _____________ _____________

47 .0 0 1 2 .91 ( 1 .59) 2 .41 ( 1 .48) 3 .16 ( 1 .57)0 ,0 1 ,1

100 .0 0 1 2 .83 ( 2 .48) 2 .25 ( 1 .93) 2 .81 ( 2 .47)0 ,0 1 ,1
2 3 .75 ( 3 .34) 2 .65 ( 2 .28) 3 .70 ( 3 .30)0 ,2
2 0 .002 a 0 .001 a 0 .002 a1 ,1

1 2 1 .16 ( 0 .66) 0 .87 ( 0 .44) 1 .16 ( 0 .65)1 ,1 0 ,2
2 1 .75 ( 1 .55) 1 .30 ( 1 .13) 1 .74 ( 1 .53)1 ,1

2 2 0 .45 ( 0 .44) 0 .19 ( 0 .20) 0 .45 ( 0 .45)0 ,2 1 ,1

300 .0 0 1 4 .53 ( 4 .46) 4 .23 ( 4 .18) 4 .53 ( 4 .46)0 ,0 1 ,1
2 2 .97 ( 3 .13) 1 .99 ( 2 .05) 2 .97 ( 3 .11)0 ,2
2 0 .02 a 0 .01 a 0 .02 a1 ,1
2 0 .55 ( 0 .36) 0 .38 ( 0 .24) 0 .55 ( 0 .36)2 ,0
3 0 .75 ( 0 .84) 1 .40 ( 1 .60) 0 .75 ( 0 .85)1 ,3
3 0 .001 a 0 .001 a 0 .001 a2 ,2
4 0 .05 ( 0 .05) 0 .08 ( 0 .09) 0 .05 ( 0 .05)0 ,4
4 0 .001 a 0 .001 a 0 .001 a1 ,3
3 0 .003 ( 0 .002) 0 .005 ( 0 .005) 0 .003 ( 0 .002)3 ,1

1 2 1 .50 ( 1 .58) 1 .61 ( 1 .63) 1 .52 ( 1 .59)1 ,1 0 ,2
2 3 .98 ( 3 .98) 2 .86 ( 2 .86) 3 .97 ( 3 .97)1 ,1
2 1 .43 ( 1 .46) 1 .39 ( 1 .42) 1 .44 ( 1 .47)2 ,0
3 0 .68 ( 0 .64) 0 .46 ( 0 .42) 0 .64 ( 0 .60)1 ,3
3 0 .14 ( 0 .16) 0 .23 ( 0 .25) 0 .14 ( 0 .15)2 ,2
4 0 .24 ( 0 .28) 0 .41 ( 0 .42) 0 .23 ( 0 .25)0 ,4
4 0 .002 ( 0 .000) 0 .003 ( 0 .002) 0 .002 ( 0 .000)1 ,3
3 0 .01 ( 0 .01) 0 .01 ( 0 .01) 0 .01 ( 0 .01)3 ,1
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3 4 0 .12 ( 0 .14) 0 .04 ( 0 .05) 0 .12 ( 0 .16)2 ,2 0 ,4
4 0 .64 ( 0 .62) 0 .39 ( 0 .44) 0 .46 ( 0 .43)1 ,3
3 0 .71 ( 0 .47) 0 .40 ( 0 .53) 0 .67 ( 0 .48)3 ,1

4 4 0 .68 ( 0 .57) 0 .37 ( 0 .35) 0 .67 ( 0 .61)0 ,4 1 ,3
3 0 .04 ( 0 .03) 0 .03 ( 0 .04) 0 .03 ( 0 .03)3 ,1

4 3 0 .14 ( 0 .18) 0 .06 ( 0 .19) 0 .22 ( 0 .31)1 ,3 3 ,1
___________________________________________________________

a. These cross sections are identically zero in the coupled states approximation.
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Table 2. Cross sections for ortho-H O in collisions with para-H as a function of basis2 2

set size. Values from the coupled states approximation are listed in parentheses. The

-1 2collision energy is given in cm and cross sections are in Å .

Energy in i t i a l f ina l B(5 ,2) B(5 ,0) B(4 ,2)______ _______ _____ _____________ _____________ _____________

123 .79 1 1 1 .62 ( 1 .52) 1 .46 ( 1 .65) 1 .60 ( 1 .50)0 ,1 1 ,0
2 1 .94 ( 1 .64) 1 .67 ( 1 .83) 1 .94 ( 1 .67)1 ,2

1 2 2 .03 ( 2 .09) 1 .73 ( 1 .98) 1 .94 ( 2 .06)1 ,0 1 ,2

300 .0 1 1 2 .27 ( 2 .26) 2 .12 ( 2 .13) 2 .28 ( 2 .28)0 ,1 1 ,0
2 2 .51 ( 2 .43) 2 .55 ( 2 .47) 2 .51 ( 2 .43)1 ,2
2 0 .47 ( 0 .32) 0 .34 ( 0 .22) 0 .48 ( 0 .33)2 ,1
3 0 .96 ( 0 .87) 0 .60 ( 0 .50) 0 .89 ( 0 .80)0 ,3
3 0 .04 ( 0 .04) 0 .08 ( 0 .09) 0 .04 ( 0 .04)1 ,2
3 0 .08 ( 0 .06) 0 .07 ( 0 .06) 0 .07 ( 0 .05)2 ,1
3 0 .003 ( 0 .005) 0 .003 ( 0 .003) 0 .002 ( 0 .001)3 ,0
4 0 .29 ( 0 .30) 0 .47 ( 0 .48) 0 .27 ( 0 .29)1 ,4

3 3 1 .16 ( 1 .12) 0 .96 ( 0 .87) 1 .17 ( 1 .12)0 ,3 1 ,2
3 0 .15 ( 0 .14) 0 .10 ( 0 .07) 0 .15 ( 0 .12)2 ,1
3 0 .03 ( 0 .02) 0 .02 ( 0 .02) 0 .02 ( 0 .02)3 ,0
4 1 .75 ( 1 .81) 1 .25 ( 1 .28) 1 .35 ( 1 .39)1 ,4

3 3 1 .10 ( 1 .17) 0 .80 ( 0 .74) 1 .13 ( 1 .07)1 ,2 2 ,1
3 0 .16 ( 0 .52) 0 .01 ( 0 .01) 0 .04 ( 0 .04)3 ,0
4 0 .21 ( 0 .21) 0 .09 ( 0 .10) 0 .04 ( 0 .03)1 ,4

3 3 0 .77 ( 0 .55) 0 .40 ( 0 .47) 0 .70 ( 0 .54)2 ,1 3 ,0
4 0 .36 ( 0 .48) 0 .21 ( 0 .25) 0 .20 ( 0 .26)1 ,4

3 4 0 .49 ( 0 .13) 0 .09 ( 0 .06) 0 .42 ( 0 .14)3 ,0 1 ,4
____________________________________________________
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Table 3. Cross sections for para-H O in collisions with ortho-H as a function of basis2 2

set size. Values from the coupled states approximation are listed in parentheses. The

-1 2collision energy is given in cm and cross sections are in Å .

Energy in i t i a l f ina l B(5 ,3) B(5 ,1) B(4 ,3)______ _______ _____ _____________ _____________ _____________

221 .71 0 1 28 .61 (16 .34) 28 .95 (16 .26) 28 .65 (16 .37)0 ,0 1 ,1
2 7 .15 ( 5 .59) 6 .42 ( 4 .94) 7 .07 ( 5 .52)0 ,2
2 0 .45 ( 0 .34) 0 .41 ( 0 .29) 0 .45 ( 0 .34)1 ,1

1 2 23 .14 (14 .22) 22 .82 (13 .84) 23 .08 (14 .17)1 ,1 0 ,2
2 3 .49 ( 2 .48) 3 .41 ( 2 .35) 3 .48 ( 2 .46)1 ,1

2 2 10 .55 ( 7 .54) 10 .82 ( 7 .70) 10 .58 ( 7 .56)0 ,2 1 ,1
_______________________________________________________
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Table 4. Cross sections for ortho-H O in collisions with ortho-H as a function of2 2

basis set size. Values from the coupled states approximation are listed in parentheses.

-1 2The collision energy is given in cm and cross sections are in Å .

Energy in i t i a l f ina l B(5 ,3) B(5 ,1) B(4 ,1)______ _______ _____ _____________ _____________ _____________

421 .71 1 1 (19 .45) 12 .37 (19 .39) 12 .40 (19 .43)0 ,1 1 ,0
2 ( 7 .70) 11 .83 ( 7 .67) 11 .76 ( 7 .59)1 ,2
2 ( 1 .76) 2 .36 ( 1 .70) 2 .34 ( 1 .68)2 ,1
3 ( 1 .85) 2 .74 ( 1 .65) 2 .72 ( 1 .62)0 ,3
3 ( 0 .45) 0 .46 ( 0 .43) 0 .44 ( 0 .41)1 ,2
3 ( 0 .24) 0 .42 ( 0 .25) 0 .42 ( 0 .25)2 ,1
3 ( 0 .02) 0 .03 ( 0 .03) 0 .03 ( 0 .03)3 ,0
4 ( 0 .29) 0 .32 ( 0 .34) 0 .29 ( 0 .31)1 ,4

3 3 ( 9 .58) 11 .88 ( 9 .65) 11 .97 ( 9 .75)0 ,3 1 ,2
3 ( 1 .23) 1 .30 ( 1 .17) 1 .42 ( 1 .32)2 ,1
3 ( 0 .08) 0 .08 ( 0 .10) 0 .10 ( 0 .08)3 ,0
4 ( 2 .67) 4 .61 ( 2 .60) 3 .68 ( 1 .68)1 ,4

3 3 ( 8 .76) 13 .84 ( 8 .67) 13 .79 ( 8 .62)1 ,2 2 ,1
3 ( 0 .35) 0 .28 ( 0 .39) 0 .27 ( 0 .41)3 ,0
4 ( 2 .09) 2 .42 ( 2 .01) 2 .21 ( 1 .79)1 ,4

3 3 ( 1 .64) 1 .84 ( 1 .46) 1 .83 ( 1 .37)2 ,1 2 ,0
4 ( 2 .45) 1 .98 ( 2 .54) 1 .85 ( 2 .61)1 ,4

3 4 ( 2 .42) 2 .65 ( 3 .40) 2 .78 ( 2 .22)2 ,0 1 ,4
_____________________________________________________
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2Table 5. Comparison of coupled states collision cross sections, in Å , for para-H O2
-1excited by He atoms and by para-H at an energy of 300 cm .2

ain i t i a l f ina l He para-H_______ _____ ____ ______2

0 1 3 .82 4 .460 ,0 1 ,1

2 1 .05 3 .130 ,2

2 0 .13 0 .362 ,0

3 1 .36 0 .841 ,3

4 0 .09 0 .050 ,4

3 0 .002 0 .0023 ,1

1 2 1 .68 1 .581 ,1 0 ,2

2 1 .05 3 .981 ,1

2 1 .09 1 .462 ,0

3 0 .25 0 .641 ,3

3 0 .14 0 .162 ,2

4 0 .19 0 .280 ,4

4 0 .0008 0 .00051 ,3

3 0 .004 0 .013 ,1

2 2 1 .55 1 .800 ,2 1 ,1

2 0 .06 0 .162 ,0

3 1 .35 1 .781 ,3

3 0 .08 0 .192 ,2

4 0 .02 0 .300 ,4

4 0 .006 0 .011 ,3

3 0 .0009 0 .0043 ,1

__________________________________________

a. Values from Ref. 17.
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2Table 6. Comparison of coupled states collision cross sections, in Å , for ortho-H O2
-1excited by He atoms and by para-H at an energy of 300 cm .2

ain i t i a l f ina l He para-H_______ _____ ____ ______2

1 1 0 .79 2 .260 ,1 1 ,0

2 2 .62 2 .431 ,2

2 0 .32 0 .322 ,1

3 0 .53 0 .870 ,3

3 0 .15 0 .041 ,2

3 0 .31 0 .062 ,1

3 0 .01 0 .0053 ,0

1 2 0 .32 1 .171 ,0 1 ,2

2 1 .34 1 .852 ,1

3 2 .34 0 .400 ,3

3 0 .59 0 .681 ,2

3 0 .06 0 .042 ,1

3 0 .05 0 .043 ,0

2 2 0 .52 0 .601 ,2 2 ,1

3 0 .75 1 .500 ,3

3 0 .70 1 .231 ,2

3 0 .96 0 .482 ,1

3 0 .03 0 .023 ,0

2 3 0 .44 0 .162 ,1 0 ,3

3 1 .52 0 .621 ,2

3 0 .85 1 .662 ,1

3 0 .52 0 .503 ,0

______________________________________

a. Values from Ref. 18.


